Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Math Biosci ; 371: 109181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537734

RESUMEN

We use a compartmental model with a time-varying transmission parameter to describe county level COVID-19 transmission in the greater St. Louis area of Missouri and investigate the challenges in fitting such a model to time-varying processes. We fit this model to synthetic and real confirmed case and hospital discharge data from May to December 2020 and calculate uncertainties in the resulting parameter estimates. We also explore non-identifiability within the estimated parameter set. We find that the death rate of infectious non-hospitalized individuals, the testing parameter and the initial number of exposed individuals are not identifiable based on an investigation of correlation coefficients between pairs of parameter estimates. We also explore how this non-identifiability ties back into uncertainties in the estimated parameters and find that it inflates uncertainty in the estimates of our time-varying transmission parameter. However, we do find that R0 is not highly affected by non-identifiability of its constituent components and the uncertainties associated with the quantity are smaller than those of the estimated parameters. Parameter values estimated from data will always be associated with some uncertainty and our work highlights the importance of conducting these analyses when fitting such models to real data. Exploring identifiability and uncertainty is crucial in revealing how much we can trust the parameter estimates.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/transmisión , COVID-19/epidemiología , Humanos , Missouri/epidemiología , Incertidumbre , Número Básico de Reproducción/estadística & datos numéricos , Modelos Epidemiológicos
2.
Pest Manag Sci ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507220

RESUMEN

BACKGROUND: Dengue virus, primarily transmitted by the Aedes aegypti mosquito, is a major public health concern affecting ≈3.83 billion people worldwide. Recent releases of Wolbachia-transinfected Ae. aegypti in several cities worldwide have shown that it can reduce dengue transmission. However, these releases are costly, and, to date, no framework has been proposed for determining economically optimal release strategies that account for both costs associated with disease risk and releases. RESULTS: We present a flexible stochastic dynamic programming framework for determining optimal release schedules for Wolbachia-transinfected mosquitoes that balances the cost of dengue infection with the costs of rearing and releasing transinfected mosquitoes. Using an ordinary differential equation model of Wolbachia and dengue in a hypothetical city loosely describing areas at risk of new dengue epidemics, we determined that an all-or-nothing release strategy that quickly brings Wolbachia to fixation is often the optimal solution. Based on this, we examined the optimal facility size, finding that it was inelastic with respect to the mosquito population size, with a 100% increase in population size resulting in a 50-67% increase in optimal facility size. Furthermore, we found that these results are robust to mosquito life-history parameters and are mostly determined by the mosquito population size and the fitness costs associated with Wolbachia. CONCLUSIONS: These results reinforce that Wolbachia-transinfected mosquitoes can reduce the cost of dengue epidemics. Furthermore, they emphasize the importance of determining the size of the target population and fitness costs associated with Wolbachia before releases occur. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Front Public Health ; 12: 1329382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38528866

RESUMEN

Background: Limited information is available on geographic disparities of COVID-19 vaccination in Missouri and yet this information is essential for guiding efforts to improve vaccination coverage. Therefore, the objectives of this study were to (a) investigate geographic disparities in the proportion of the population vaccinated against COVID-19 in Missouri and (b) identify socioeconomic and demographic predictors of the identified disparities. Methods: The COVID-19 vaccination data for time period January 1 to December 31, 2021 were obtained from the Missouri Department of Health. County-level data on socioeconomic and demographic factors were downloaded from the 2020 American Community Survey. Proportions of county population vaccinated against COVID-19 were computed and displayed on choropleth maps. Global ordinary least square regression model and local geographically weighted regression model were used to identify predictors of proportions of COVID-19 vaccinated population. Results: Counties located in eastern Missouri tended to have high proportions of COVID-19 vaccinated population while low proportions were observed in the southernmost part of the state. Counties with low proportions of population vaccinated against COVID-19 tended to have high percentages of Hispanic/Latino population (p = 0.046), individuals living below the poverty level (p = 0.049), and uninsured (p = 0.015) populations. The strength of association between proportion of COVID-19 vaccinated population and percentage of Hispanic/Latino population varied by geographic location. Conclusion: The study findings confirm geographic disparities of proportions of COVID-19 vaccinated population in Missouri. Study findings are useful for guiding programs geared at improving vaccination coverage and uptake by targeting resources to areas with low proportions of vaccinated individuals.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Missouri/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Retrospectivos , Vacunación
4.
J Biol Dyn ; 17(1): 2287084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053251

RESUMEN

The region of St. Louis, Missouri, has displayed a high level of heterogeneity in COVID-19 cases, hospitalization, and vaccination coverage. We investigate how human mobility, vaccination, and time-varying transmission rates influenced SARS-CoV-2 transmission in five counties in the St. Louis area. A COVID-19 model with a system of ordinary differential equations was developed to illustrate the dynamics with a fully vaccinated class. Using the weekly number of vaccinations, cases, and hospitalization data from five counties in the greater St. Louis area in 2021, parameter estimation for the model was completed. The transmission coefficients for each county changed four times in that year to fit the model and the changing behaviour. We predicted the changes in disease spread under scenarios with increased vaccination coverage. SafeGraph local movement data were used to connect the forces of infection across various counties.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Modelos Biológicos , Vacunación , Hospitalización
5.
PLoS Negl Trop Dis ; 17(9): e0011593, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656759

RESUMEN

Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.


Asunto(s)
Culicidae , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Viremia , Infección por el Virus Zika/epidemiología , Dengue/epidemiología
6.
Proc Natl Acad Sci U S A ; 120(25): e2301525120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307469

RESUMEN

Genetic-based methods offer environmentally friendly species-specific approaches for control of insect pests. One method, CRISPR homing gene drive that target genes essential for development, could provide very efficient and cost-effective control. While significant progress has been made in developing homing gene drives for mosquito disease vectors, little progress has been made with agricultural insect pests. Here, we report the development and evaluation of split homing drives that target the doublesex (dsx) gene in Drosophila suzukii, an invasive pest of soft-skinned fruits. The drive component, consisting of dsx single guide RNA and DsRed genes, was introduced into the female-specific exon of dsx, which is essential for function in females but not males. However, in most strains, hemizygous females were sterile and produced the male dsx transcript. With a modified homing drive that included an optimal splice acceptor site, hemizygous females from each of the four independent lines were fertile. High transmission rates of the DsRed gene (94 to 99%) were observed with a line that expressed Cas9 with two nuclear localization sequences from the D. suzukii nanos promoter. Mutant alleles of dsx with small in-frame deletions near the Cas9 cut site were not functional and thus would not provide resistance to drive. Finally, mathematical modeling showed that the strains could be used for suppression of lab cage populations of D. suzukii with repeated releases at relatively low release ratios (1:4). Our results indicate that the split CRISPR homing gene drive strains could potentially provide an effective means for control of D. suzukii populations.


Asunto(s)
Sistemas CRISPR-Cas , Tecnología de Genética Dirigida , Femenino , Animales , Frutas , Marcación de Gen , Drosophila
7.
Trends Genet ; 39(8): 609-623, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37198063

RESUMEN

Engineered gene drives create potential for both widespread benefits and irreversible harms to ecosystems. CRISPR-based systems of allelic conversion have rapidly accelerated gene drive research across diverse taxa, putting field trials and their necessary risk assessments on the horizon. Dynamic process-based models provide flexible quantitative platforms to predict gene drive outcomes in the context of system-specific ecological and evolutionary features. Here, we synthesize gene drive dynamic modeling studies to highlight research trends, knowledge gaps, and emergent principles, organized around their genetic, demographic, spatial, environmental, and implementation features. We identify the phenomena that most significantly influence model predictions, discuss limitations of biological complexity and uncertainty, and provide insights to promote responsible development and model-assisted risk assessment of gene drives.


Asunto(s)
Tecnología de Genética Dirigida , Ecosistema , Evolución Biológica , Medición de Riesgo
8.
PLoS Comput Biol ; 19(4): e1010424, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104528

RESUMEN

The mosquito Aedes aegypti is the vector of a number of medically-important viruses, including dengue virus, yellow fever virus, chikungunya virus, and Zika virus, and as such vector control is a key approach to managing the diseases they cause. Understanding the impact of vector control on these diseases is aided by first understanding its impact on Ae. aegypti population dynamics. A number of detail-rich models have been developed to couple the dynamics of the immature and adult stages of Ae. aegypti. The numerous assumptions of these models enable them to realistically characterize impacts of mosquito control, but they also constrain the ability of such models to reproduce empirical patterns that do not conform to the models' behavior. In contrast, statistical models afford sufficient flexibility to extract nuanced signals from noisy data, yet they have limited ability to make predictions about impacts of mosquito control on disease caused by pathogens that the mosquitoes transmit without extensive data on mosquitoes and disease. Here, we demonstrate how the differing strengths of mechanistic realism and statistical flexibility can be fused into a single model. Our analysis utilizes data from 176,352 household-level Ae. aegypti aspirator collections conducted during 1999-2011 in Iquitos, Peru. The key step in our approach is to calibrate a single parameter of the model to spatio-temporal abundance patterns predicted by a generalized additive model (GAM). In effect, this calibrated parameter absorbs residual variation in the abundance time-series not captured by other features of the mechanistic model. We then used this calibrated parameter and the literature-derived parameters in the agent-based model to explore Ae. aegypti population dynamics and the impact of insecticide spraying to kill adult mosquitoes. The baseline abundance predicted by the agent-based model closely matched that predicted by the GAM. Following spraying, the agent-based model predicted that mosquito abundance rebounds within about two months, commensurate with recent experimental data from Iquitos. Our approach was able to accurately reproduce abundance patterns in Iquitos and produce a realistic response to adulticide spraying, while retaining sufficient flexibility to be applied across a range of settings.


Asunto(s)
Aedes , Virus Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores/fisiología , Dinámica Poblacional , Virus de la Fiebre Amarilla , Dengue/epidemiología
9.
PNAS Nexus ; 2(3): pgad024, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909820

RESUMEN

Transmission heterogeneity, whereby a disproportionate fraction of pathogen transmission events result from a small number of individuals or geographic locations, is an inherent property of many, if not most, infectious disease systems. For vector-borne diseases, transmission heterogeneity is inferred from the distribution of the number of vectors per host, which could lead to significant bias in situations where vector abundance and transmission risk at the household do not correlate, as is the case with dengue virus (DENV). We used data from a contact tracing study to quantify the distribution of DENV acute infections within human activity spaces (AS), the collection of residential locations an individual routinely visits, and quantified measures of virus transmission heterogeneity from two consecutive dengue outbreaks (DENV-4 and DENV-2) that occurred in the city of Iquitos, Peru. Negative-binomial distributions and Pareto fractions showed evidence of strong overdispersion in the number of DENV infections by AS and identified super-spreading units (SSUs): i.e. AS where most infections occurred. Approximately 8% of AS were identified as SSUs, contributing to more than 50% of DENV infections. SSU occurrence was associated more with DENV-2 infection than with DENV-4, a predominance of inapparent infections (74% of all infections), households with high Aedes aegypti mosquito abundance, and high host susceptibility to the circulating DENV serotype. Marked heterogeneity in dengue case distribution, and the role of inapparent infections in defining it, highlight major challenges faced by reactive interventions if those transmission units contributing the most to transmission are not identified, prioritized, and effectively treated.

10.
Math Biosci Eng ; 20(2): 1637-1673, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36899502

RESUMEN

Many pathogens spread via environmental transmission, without requiring host-to-host direct contact. While models for environmental transmission exist, many are simply constructed intuitively with structures analogous to standard models for direct transmission. As model insights are generally sensitive to the underlying model assumptions, it is important that we are able understand the details and consequences of these assumptions. We construct a simple network model for an environmentally-transmitted pathogen and rigorously derive systems of ordinary differential equations (ODEs) based on different assumptions. We explore two key assumptions, namely homogeneity and independence, and demonstrate that relaxing these assumptions can lead to more accurate ODE approximations. We compare these ODE models to a stochastic implementation of the network model over a variety of parameters and network structures, demonstrating that with fewer restrictive assumptions we are able to achieve higher accuracy in our approximations and highlighting more precisely the errors produced by each assumption. We show that less restrictive assumptions lead to more complicated systems of ODEs and the potential for unstable solutions. Due to the rigour of our derivation, we are able to identify the reason behind these errors and propose potential resolutions.


Asunto(s)
Enfermedades Transmisibles , Microbiología Ambiental , Modelos Biológicos , Enfermedades Transmisibles/transmisión
11.
PLoS One ; 18(2): e0273798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730229

RESUMEN

Current knowledge of dengue virus (DENV) transmission provides only a partial understanding of a complex and dynamic system yielding a public health track record that has more failures than successes. An important part of the problem is that the foundation for contemporary interventions includes a series of longstanding, but untested, assumptions based on a relatively small portion of the human population; i.e., people who are convenient to study because they manifest clinically apparent disease. Approaching dengue from the perspective of people with overt illness has produced an extensive body of useful literature. It has not, however, fully embraced heterogeneities in virus transmission dynamics that are increasingly recognized as key information still missing in the struggle to control the most important insect-transmitted viral infection of humans. Only in the last 20 years have there been significant efforts to carry out comprehensive longitudinal dengue studies. This manuscript provides the rationale and comprehensive, integrated description of the methodology for a five-year longitudinal cohort study based in the tropical city of Iquitos, in the heart of the Peruvian Amazon. Primary data collection for this study was completed in 2019. Although some manuscripts have been published to date, our principal objective here is to support subsequent publications by describing in detail the structure, methodology, and significance of a specific research program. Our project was designed to study people across the entire continuum of disease, with the ultimate goal of quantifying heterogeneities in human variables that affect DENV transmission dynamics and prevention. Because our study design is applicable to other Aedes transmitted viruses, we used it to gain insights into Zika virus (ZIKV) transmission when during the project period ZIKV was introduced and circulated in Iquitos. Our prospective contact cluster investigation design was initiated by detecttion of a person with a symptomatic DENV infection and then followed that person's immediate contacts. This allowed us to monitor individuals at high risk of DENV infection, including people with clinically inapparent and mild infections that are otherwise difficult to detect. We aimed to fill knowledge gaps by defining the contribution to DENV transmission dynamics of (1) the understudied majority of DENV-infected people with inapparent and mild infections and (2) epidemiological, entomological, and socio-behavioral sources of heterogeneity. By accounting for factors underlying variation in each person's contribution to transmission we sought to better determine the type and extent of effort needed to better prevent virus transmission and disease.


Asunto(s)
Arbovirus , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Estudios Longitudinales , Estudios Prospectivos , Perú/epidemiología , Infección por el Virus Zika/epidemiología
12.
Math Biosci ; 356: 108958, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36567003

RESUMEN

The dynamics of HIV viral load following the initiation of antiretroviral therapy is not well-described by simple, single-phase exponential decay. Several mathematical models have been proposed to describe its more complex behavior, the most popular of which is two-phase exponential decay. The underlying assumption in two-phase exponential decay is that there are two classes of infected cells with different lifespans. However, with the exception of CD4+ T cells, there is not a consensus on all of the cell types that can become productively infected, and the fit of the two-phase exponential decay to observed data from SHIV.C.CH505 infected infant rhesus macaques was relatively poor. Therefore, we propose a new model for viral decay, inspired by the Gompertz model where the decay rate itself is a dynamic variable. We modify the Gompertz model to include a linear term that modulates the decay rate. We show that this simple model performs as well as the two-phase exponential decay model on HIV and SIV data sets, and outperforms it for the infant rhesus macaque SHIV.C.CH505 infection data set. We also show that by using a stochastic differential equation formulation, the modified Gompertz model can be interpreted as being driven by a population of infected cells with a continuous distribution of cell lifespans, and estimate this distribution for the SHIV.C.CH505-infected infant rhesus macaques. Thus, we find that the dynamics of viral decay in this model of infant HIV infection and treatment may be explained by a distribution of cell lifespans, rather than two distinct cell types.


Asunto(s)
Infecciones por VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Macaca mulatta , Longevidad , Carga Viral
13.
PLoS Negl Trop Dis ; 16(12): e0010863, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36548248

RESUMEN

The importance of mosquitoes in human pathogen transmission has motivated major research efforts into mosquito biology in pursuit of more effective vector control measures. Aedes aegypti is a particular concern in tropical urban areas, where it is the primary vector of numerous flaviviruses, including the yellow fever, Zika, and dengue viruses. With an anthropophilic habit, Ae. aegypti prefers houses, human blood meals, and ovipositioning in water-filled containers. We hypothesized that this relatively simple ecological niche should allow us to predict the impacts of insecticidal control measures on mosquito populations. To do this, we use Skeeter Buster 2 (SB2), a stochastic, spatially explicit, mechanistic model of Ae. aegypti population biology. SB2 builds on Skeeter Buster, which reproduced equilibrium dynamics of Ae. aegypti in Iquitos, Peru. Our goal was to validate SB2 by predicting the response of mosquito populations to perturbations by indoor insecticidal spraying and widespread destructive insect surveys. To evaluate SB2, we conducted two field experiments in Iquitos, Peru: a smaller pilot study in 2013 (S-2013) followed by a larger experiment in 2014 (L-2014). Here, we compare model predictions with (previously reported) empirical results from these experiments. In both simulated and empirical populations, repeated spraying yielded substantial yet temporary reductions in adult densities. The proportional effects of spraying were broadly comparable between simulated and empirical results, but we found noteworthy differences. In particular, SB2 consistently over-estimated the proportion of nulliparous females and the proportion of containers holding immature mosquitoes. We also observed less temporal variation in simulated surveys of adult abundance relative to corresponding empirical observations. Our results indicate the presence of ecological heterogeneities or sampling processes not effectively represented by SB2. Although additional empirical research could further improve the accuracy and precision of SB2, our results underscore the importance of non-linear dynamics in the response of Ae. aegypti populations to perturbations, and suggest general limits to the fine-grained predictability of its population dynamics over space and time.


Asunto(s)
Aedes , Dengue , Insecticidas , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Insecticidas/farmacología , Mosquitos Vectores , Perú , Proyectos Piloto
14.
PLoS One ; 17(9): e0274899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36170339

RESUMEN

BACKGROUND: Evidence seems to suggest that the risk of Coronavirus Disease 2019 (COVID-19) might vary across communities due to differences in population characteristics and movement patterns. However, little is known about these differences in the greater St Louis Area of Missouri and yet this information is useful for targeting control efforts. Therefore, the objectives of this study were to investigate (a) geographic disparities of COVID-19 risk and (b) associations between COVID-19 risk and socioeconomic, demographic, movement and chronic disease factors in the Greater St. Louis Area of Missouri, USA. METHODS: Data on COVID-19 incidence and chronic disease hospitalizations were obtained from the Department of Health and Missouri Hospital Association, respectively. Socioeconomic and demographic data were obtained from the 2018 American Community Survey while population mobility data were obtained from the SafeGraph website. Choropleth maps were used to identify geographic disparities of COVID-19 risk and several sociodemographic and chronic disease factors at the ZIP Code Tabulation Area (ZCTA) spatial scale. Global negative binomial and local geographically weighted negative binomial models were used to investigate associations between ZCTA-level COVID-19 risk and socioeconomic, demographic and chronic disease factors. RESULTS: There were geographic disparities found in COVID-19 risk. Risks tended to be higher in ZCTAs with high percentages of the population with a bachelor's degree (p<0.0001) and obesity hospitalizations (p<0.0001). Conversely, risks tended to be lower in ZCTAs with high percentages of the population working in agriculture (p<0.0001). However, the association between agricultural occupation and COVID-19 risk was modified by per capita between ZCTA visits. Areas that had both high per capita between ZCTA visits and high percentages of the population employed in agriculture had high COVID-19 risks. The strength of association between agricultural occupation and COVID-19 risk varied by geographic location. CONCLUSIONS: Geographic disparities of COVID-19 risk exist in the St. Louis area and are associated with sociodemographic factors, population movements, and obesity hospitalization risks. The latter is particularly concerning due to the growing prevalence of obesity and the known immunological impairments among obese individuals. Therefore, future studies need to focus on improving our understanding of the relationships between COVID-19 vaccination efficacy, obesity and waning of immunity among obese individuals so as to better guide vaccination regimens and reduce disparities.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Vacunas contra la COVID-19 , Humanos , Incidencia , Missouri/epidemiología , Obesidad , Factores Socioeconómicos , Estados Unidos
15.
BMC Public Health ; 22(1): 321, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168588

RESUMEN

BACKGROUND: There is evidence of geographic disparities in COVID-19 hospitalization risks that, if identified, could guide control efforts. Therefore, the objective of this study was to investigate Zip Code Tabulation Area (ZCTA)-level geographic disparities and identify predictors of COVID-19 hospitalization risks in the St. Louis area. METHODS: Hospitalization data for COVID-19 and several chronic diseases were obtained from the Missouri Hospital Association. ZCTA-level data on socioeconomic and demographic factors were obtained from the American Community Survey. Geographic disparities in distribution of COVID-19 age-adjusted hospitalization risks, socioeconomic and demographic factors as well as chronic disease risks were investigated using choropleth maps. Predictors of ZCTA-level COVID-19 hospitalization risks were investigated using global negative binomial and local geographically weighted negative binomial models. RESULTS: COVID-19 hospitalization risks were significantly higher in ZCTAs with high diabetes hospitalization risks (p < 0.0001), COVID-19 risks (p < 0.0001), black population (p = 0.0416), and populations with some college education (p = 0.0005). The associations between COVID-19 hospitalization risks and the first three predictors varied by geographic location. CONCLUSIONS: There is evidence of geographic disparities in COVID-19 hospitalization risks that are driven by differences in socioeconomic, demographic and health-related factors. The impacts of these factors vary by geographical location implying that a 'one-size-fits-all' approach may not be appropriate for management and control. Using both global and local models leads to a better understanding of geographic disparities. These findings are useful for informing health planning to identify geographic areas likely to have high numbers of individuals needing hospitalization as well as guiding vaccination efforts.


Asunto(s)
COVID-19 , Hospitalización , Humanos , Missouri/epidemiología , Modelos Estadísticos , SARS-CoV-2
16.
Evol Appl ; 14(8): 2098-2113, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429751

RESUMEN

This study describes the evolution of knockdown resistance (kdr) haplotypes in Aedes aegypti in response to pyrethroid insecticide use over the course of 18 years in Iquitos, Peru. Based on the duration and intensiveness of sampling (~10,000 samples), this is the most thorough study of kdr population genetics in Ae. aegypti to date within a city. We provide evidence for the direct connection between programmatic citywide pyrethroid spraying and the increase in frequency of specific kdr haplotypes by identifying two evolutionary events in the population. The relatively high selection coefficients, even under infrequent insecticide pressure, emphasize how quickly Ae. aegypti populations can evolve. In our examination of the literature on mosquitoes and other insect pests, we could find no cases where a pest evolved so quickly to so few exposures to low or nonresidual insecticide applications. The observed rapid increase in frequency of resistance alleles might have been aided by the incomplete dominance of resistance-conferring alleles over corresponding susceptibility alleles. In addition to dramatic temporal shifts, spatial suppression experiments reveal that genetic heterogeneity existed not only at the citywide scale, but also on a very fine scale within the city.

17.
Evol Appl ; 14(6): 1612-1622, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34178107

RESUMEN

Many novel genetic approaches are under development to combat insect pests. One genetic strategy aims to suppress or locally eliminate a species through large, repeated releases of genetically engineered strains that render female offspring unviable under field conditions. Strains with this female-killing characteristic have been developed either with all of the molecular components in a single construct or with the components in two constructs inserted at independently assorting loci. Strains with two constructs are typically considered to be only of value as research tools and for producing solely male offspring in rearing factories which are subsequently sterilized by radiation before release. A concern with the two-construct strains is that once released, the two constructs would become separated and therefore non-functional. The only female-killing strains that have been released in the field without sterilization are single-construct strains. Here, we use a population genetics model with density dependence to evaluate the relative effectiveness of female-killing approaches based on single- and two-construct arrangements. We find that, in general, the single-construct arrangement results in slightly faster population suppression, but the two-construct arrangement can eventually cause stronger suppression and cause local elimination with a smaller release size. Based on our results, there is no a priori reason that males carrying two independently segregating constructs need to be sterilized prior to release. In some cases, a fertile release would be more efficient for population suppression.

18.
Evol Appl ; 14(5): 1421-1435, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025776

RESUMEN

Introduced rodent populations pose significant threats worldwide, with particularly severe impacts on islands. Advancements in genome editing have motivated interest in synthetic gene drives that could potentially provide efficient and localized suppression of invasive rodent populations. Application of such technologies will require rigorous population genomic surveys to evaluate population connectivity, taxonomic identification, and to inform design of gene drive localization mechanisms. One proposed approach leverages the predicted shifts in genetic variation that accompany island colonization, wherein founder effects, genetic drift, and island-specific selection are expected to result in locally fixed alleles (LFA) that are variable in neighboring nontarget populations. Engineering of guide RNAs that target LFA may thus yield gene drives that spread within invasive island populations, but would have limited impacts on nontarget populations in the event of an escape. Here we used pooled whole-genome sequencing of invasive mouse (Mus musculus) populations on four islands along with paired putative source populations to test genetic predictions of island colonization and characterize locally fixed Cas9 genomic targets. Patterns of variation across the genome reflected marked reductions in allelic diversity in island populations and moderate to high degrees of differentiation from nearby source populations despite relatively recent colonization. Locally fixed Cas9 sites in female fertility genes were observed in all island populations, including a small number with multiplexing potential. In practice, rigorous sampling of presumptive LFA will be essential to fully assess risk of resistance alleles. These results should serve to guide development of improved, spatially limited gene drive design in future applications.

19.
PLoS Comput Biol ; 17(1): e1008627, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465065

RESUMEN

Heterogeneous exposure to mosquitoes determines an individual's contribution to vector-borne pathogen transmission. Particularly for dengue virus (DENV), there is a major difficulty in quantifying human-vector contacts due to the unknown coupled effect of key heterogeneities. To test the hypothesis that the reduction of human out-of-home mobility due to dengue illness will significantly influence population-level dynamics and the structure of DENV transmission chains, we extended an existing modeling framework to include social structure, disease-driven mobility reductions, and heterogeneous transmissibility from different infectious groups. Compared to a baseline model, naïve to human pre-symptomatic infectiousness and disease-driven mobility changes, a model including both parameters predicted an increase of 37% in the probability of a DENV outbreak occurring; a model including mobility change alone predicted a 15.5% increase compared to the baseline model. At the individual level, models including mobility change led to a reduction of the importance of out-of-home onward transmission (R, the fraction of secondary cases predicted to be generated by an individual) by symptomatic individuals (up to -62%) at the expense of an increase in the relevance of their home (up to +40%). An individual's positive contribution to R could be predicted by a GAM including a non-linear interaction between an individual's biting suitability and the number of mosquitoes in their home (>10 mosquitoes and 0.6 individual attractiveness significantly increased R). We conclude that the complex fabric of social relationships and differential behavioral response to dengue illness cause the fraction of symptomatic DENV infections to concentrate transmission in specific locations, whereas asymptomatic carriers (including individuals in their pre-symptomatic period) move the virus throughout the landscape. Our findings point to the difficulty of focusing vector control interventions reactively on the home of symptomatic individuals, as this approach will fail to contain virus propagation by visitors to their house and asymptomatic carriers.


Asunto(s)
Dengue/epidemiología , Dengue/transmisión , Brotes de Enfermedades/estadística & datos numéricos , Mosquitos Vectores , Animales , Biología Computacional , Dengue/prevención & control , Dengue/virología , Virus del Dengue , Femenino , Humanos , Modelos Estadísticos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Dinámica Poblacional
20.
Nat Commun ; 12(1): 232, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431829

RESUMEN

Contact tracing is critical to controlling COVID-19, but most protocols only "forward-trace" to notify people who were recently exposed. Using a stochastic branching-process model, we find that "bidirectional" tracing to identify infector individuals and their other infectees robustly improves outbreak control. In our model, bidirectional tracing more than doubles the reduction in effective reproduction number (Reff) achieved by forward-tracing alone, while dramatically increasing resilience to low case ascertainment and test sensitivity. The greatest gains are realised by expanding the manual tracing window from 2 to 6 days pre-symptom-onset or, alternatively, by implementing high-uptake smartphone-based exposure notification; however, to achieve the performance of the former approach, the latter requires nearly all smartphones to detect exposure events. With or without exposure notification, our results suggest that implementing bidirectional tracing could dramatically improve COVID-19 control.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Trazado de Contacto/métodos , Brotes de Enfermedades/prevención & control , COVID-19/diagnóstico , Simulación por Computador , Humanos , Aplicaciones Móviles , SARS-CoV-2 , Sensibilidad y Especificidad , Teléfono Inteligente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...